
Construction of Ext1
R(A,B)

We begin by constructing a category, SES. The objects are short exact sequences 0 → A → E → B → 0
(suppose of R-modules) and the arrows are diagrams, which is to say, vertical maps such that the following
diagram commutes:

0 A E B 0

0 A′ E′ B′ 0

Now, fix A and B and consider extensions 0→ A→ E → B → 0. We define an equivalence relation on
extensions by (0→ A→ E → B → 0) ∼ (0→ A→ E′ → B → 0) if and only if we have

0 A E B 0

0 A E′ B 0

idA θ idB

where θ : E → E′ is an isomorphism.

Exercise 1 ∼ defines an equivalence relation on extensions.

We show ∼ is symmetric, reflexive, and transitive:

– Symmetric: idE is an isomorphism.

– Reflexive: θ : E → E′ an isomorphism means θ−1 : E′ → E is an isomorphism.

– Transitive: θ1 : E → E′ and θ2 : E′ → E′′ isomorphisms mean (θ2 ◦ θ1) : E → E′′ is an

isomorphism.

Now, we define an extension 0 → A → E → B → 0 to be split if it is equivalent to the short exact
sequence 0→ A→ A⊕B → B → 0 with maps inclusion and projection.

Exercise 2 Prove that the following are equivalent:

1. 0→ A
f−→ E

g−→ B → 0 is split in the above definition;

2. the map f is split;

3. the map g is split.

First, recall that for f to be split means there exists ϕ : E → A such that ϕf = idA. For g to

be split means there exists ψ : B → E such that gψ = idB .

Now for 1 implies 2: we have a commutative diagram

0 A E B 0

0 A A⊕B B 0

f

idA

g

θ idB

a 7→(a,) (a,b) 7→b
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Since the diagram commutes in the second square, for all e ∈ E, θ(e) = (x, g(e)). Define

ϕ : E → A to be ϕ(e) = x. Then see that as the diagram commutes in the first square, for all

a ∈ A, (a, 0) = θf(a). Therefore

(a, 0) = θf(a) = θ(fa) = (ϕ(fa), g(fa)) = (ϕf(a), g(fa)),

so ϕf = idA, as desired.

Now, 1 implies 3: the same diagram

0 A E B 0

0 A A⊕B B 0

f

idA

g

θ idB

a 7→(a,) (a,b) 7→b

commuting means that g(e) = π2θ(e), for π2 projection to the second factor. If we choose

ψ : B → E to be ψ(b) = θ−1(0, b), then

gψ(b) = π2θθ
−1(0, b) = π2(0, b) = b,

and gψ = idB as desired.

Now for 2 implies 1: since f is split, there exists ϕ : E → A with ϕf = idA. We need to show

there is some isomorphism θ : E → A⊕ B such that 0→ A→ E → B → 0 is split. We claim

it is θ(e) = (ϕ(e), g(e)). θ will indeed be an isomorphism by the five lemma once we establish

the commutativity of the diagram. To see that

0 A E B 0

0 A A⊕B B 0

f

idA

g

θ idB

a 7→(a,) (a,b) 7→b

commutes, observe that for all a ∈ A,

θf(a) = (ϕ(f(a)), g(f(a))) = (a, gf(a)) = (a, 0),

so the left square commutes. Also for all e ∈ E,

π2θ(e) = π2(ϕ(e), g(e)) = g(e) = idB g(e),

so the right square commutes. Thus the extension is exact.
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Finally, for 3 implies 1: we have the existence of ψ : B → E such that gψ = idB . It is equivalent

to have the isomorphisms showing the extension is exact go in the other direction, so we let

σ : A ⊕ B → E be σ(a, b) = f(a) + ψ(b). First, σ is indeed an isomorphism again by the five

lemma after showing the diagram commutes. And to see that

0 A A⊕B B 0

0 A E B 0

a 7→(a,)

idA

(a,b) 7→b

σ idB

f g

commutes, on the left square we get σ(a, 0) = f(a) + ψ(0) = f(a) = f idA(a). On the right

square we get gσ(a, b) = g(f(a) + ψ(b)) = gf(a) + gψ(b) = b = idB π2(a, b).

Now, given two extension 0→ A
f−→ E

g−→ B → 0 and 0→ A
f ′

−→ E′
g′−→ B → 0, we can build a pullback:

Γ = E ×B E′ = {(e, e′) ∈ E × E′ | g(e) = g′(e′)} .

In other words, the following commutes:

Γ

E E′

B

π1 π2

g g′

Exercise 3 Show that Γ is an R-module.

If it is, it is clearly a submodule of E ⊕ E′, so we use the submodule criterion. We must

show Γ 6= ∅ and x + ry ∈ Γ for all r ∈ R and x,y ∈ Γ. Clearly Γ 6= ∅, since (0, 0) ∈ Γ as

g(0) = g′(0) = 0. Now let r ∈ R and (x, x′), (y, y′) ∈ Γ. See that

g(x+ ry) = g(x) + rg(y) = g′(x′) + rg′(y′) = g′(x′ + ry′),

so (x, x′) + r(y, y′) ∈ Γ, and Γ is an R-module, as desired.

Exercise 4 Show that ∆ = {(f(t),−f ′(t)) | t ∈ A} is a submodule of Γ.

Now we really use the submodule criterion. ∆ 6= ∅ because (0, 0) ∈ ∆, since (0, 0) =

(f(0),−f ′(0)) for 0 ∈ A. And if (x, x′), (y, y′) ∈ ∆ and r ∈ R, then there is some t ∈ A

such that (f(t),−f ′(t)) = (x, x′) and some s ∈ A such that (f(s),−f ′(s)) = (y, y′). Now see
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that

(x, x′) + r(y, y′) =
(
f(t),−f ′(t)

)
+ r
(
f(s),−f ′(s)

)
=
(
f(t+ rs),−f ′(t+ rs)

)
∈ ∆,

as t+ rs ∈ A.

Exercise 5 Show that 0 → A → Γ�∆ → B → 0 is an extension; i.e., show that it is a short exact
sequence.

Define the maps to be

0→ A
F−→ Γ�∆

G−→ B → 0,

where F (t) = (f(t), 0) mod ∆ and G(e, e′) mod ∆ = g(e). Note first that

F (t) = (f(t), 0) mod ∆ = (f(t), 0)− (f(t),−f ′(t)) mod ∆ = (0, f ′(t)) mod ∆

and that

G(e, e′) mod ∆ = g(e) = g′(e′).

Also, F is clearly well-defined, but G not as clearly. If (e1, e
′
1) mod ∆ = (e2, e

′
2) mod ∆, then

(e1 − e2, e′1 − e′2) mod ∆ = (f(t),−f ′(t)) mod ∆,

so e1 − e2 ∈ im f = ker g and e′1 − e′2 ∈ im f ′ = ker g′. Thus

0 = g(e1 − e2) =g(e1)− g(e2), so g(e1) = g(e2), and

0 = g′(e′1 − e′2) =g′(e′1)− g′(e′2), so g′(e′1) = g′(e′2).

Thus G is well-defined.

F is injective because if F (t) = (0, 0) mod ∆, then (f(t), 0) = (0, f ′(t)) = (0, 0) mod ∆,

and since (overkilling) both f and f ′ are injective, t = 0. G is surjective becase G(e, e′)

mod ∆ = g(e) = g′(e′) and g, g′ are surjective.
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Now we show that imF = kerG. Let (x, y) mod ∆ ∈ imF . Then there exists t ∈ A such that

F (t) = (f(t), 0) mod ∆ = (0, f ′(t)) mod ∆ = (x, y) mod ∆. Then compute

G(x, y) mod ∆ = g(x) = g′(y).

Since x = f(t), x ∈ im f = ker g, so g(x) = 0. Identically we overkill and y ∈ im f ′ = ker g′, so

g′(y) = 0. Thus (x, y) mod ∆ ∈ kerG.

Let (x, y) mod ∆ ∈ kerG. Then G(x, y) = g(x) = g′(y) = 0, so x ∈ ker g = im f and

y ∈ ker g′ = im f ′. So there exists t, s ∈ A such that f(t) = x and f ′(s) = y. We need to show

there exists u ∈ A such that

F (u) = (f(u), 0) mod ∆ = (0, f ′(u)) mod ∆ = (x, y) mod ∆

Since

(x, y) mod ∆ = (f(t), f ′(s)) mod ∆

= (f(t), f ′(s))− (f(t),−f ′(t)) mod ∆

= (0, f ′(s+ t)) mod ∆,

or symmetrically

(x, y) mod ∆ = (f(t), f ′(s)) mod ∆

= (f(t), f ′(s)) + (f(s),−f ′(s)) mod ∆

= (f(t+ s), 0) mod ∆,

let u = t+ s. Then

F (u) = F (t+ s) = (f(t+ s), 0) mod ∆ = (0, f ′(t+ s)) mod ∆ = (x, y) mod ∆,

and (x, y) mod ∆ ∈ imF . Thus 0→ A→ Γ�∆→ B → 0 is exact, as desired.
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Exercise 6 Show that the set of equivalence classes of extensions 0 → A → E → B → 0 under the

binary operation E � E′ = Γ�∆ is an R-module. We denote this module Ext1R(A,B). Show that its
identity is the equivalence class of the split short exact sequence.

First, to see Ext1R(A,B) is an abelian group:

1. � is closed by Exercise 5. It’s well-defined on equivalence classes, since if

0 A E B 0

0 A E′ B 0

f

idA

g

θ idB

f ′ g′

commutes (i.e., if E ∼ E′), then we need to show E � Ẽ = E′ � Ẽ. Observe that since

E ∼ E′, we can use the commutativity of the diagram to write

E � Ẽ = {(e, ẽ) | g(e) = g̃(ẽ)}�{(f(t),−f̃(t))}

= {(e, ẽ) | g
′(θ(e)) = g̃(ẽ)}�{(θ−1(f ′(t)),−f̃(t))},

and since θ is an isomorphism,

{(e, ẽ) | g′(θ(e)) = g̃(ẽ)}�{(θ−1(f ′(t)),−f̃(t))}

∼= {(e
′, ẽ) | g′(e′) = g̃(ẽ)}�{(f ′(t),−f̃(t))}

= E′ � Ẽ.

2. For associativity, see that given

0 A E B 0,

0 A E′ B 0,

0 A E′′ B 0,

f g

f ′ g′

f ′′ g′′
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we have

E � (E′ � E′′)

= E � {(e
′, e′′) | g′(e′) = g′′(e′′)}�{(f ′(t),−f ′′(t))}

= {(e, (e
′, e′′)) | g(e) = G′(e′, e′′) = g′(e′) = g′′(e′′)}�{(f(t),−(f ′(t),−f ′′(t)))}

= {(e, e
′, e′′) | g(e) = g′(e′) = g′′(e′′)}�{(f(t),−f ′(t), f ′′(t))}

= {((e, e
′), e′′) | g(e) = g′(e′) = G(e, e′) = g′′(e′′)}�{((f(t),−f ′(t)),−f ′′(t))}

= {(e, e
′) | g(e) = g′(e′)}�{(f(t),−f ′(t))}� E′′

= (E � E′) � E′′

The maps line up nicely because the short exact sequence of a Γ�∆ is just the maps

modulo ∆.

3. The identity element is (the equivalence class of) E = A⊕B in the extension 0→ A
ι1−→

A⊕B π2−→ B → 0. Clearly this is exact, as im f = A⊕ 0 = ker g. And for any E,

Γ = {(e, (a, b)) | g(e) = b} ∼= {(a, e) | g(e) = b} = A⊕ E,

since g is surjective, and

∆ = {(f(t),−(t, 0)) | t ∈ A} ∼= {(−t, 0) | t ∈ A} = A⊕ 0,

since f is injective. Then E � A ⊕ B = Γ�∆ = A⊕ E�A⊕ 0
∼= E. And A ⊕ B � E = E

will come from abelian-ness.

4. The inverse of (the equivalence class of) 0 → A
f−→ E

g−→ B → 0 is (the equivalence class

of) 0→ A
f−→ E

−g−−→ B → 0. Indeed, see that

Γ = {(e1, e2) | g(e1) = −g(e2)}

= {(e1, e2) | g(e1 + e2) = 0}

= {(e1, e2) | e1 + e2 ∈ ker g}

= {(e1, e2) | e1 + e2 ∈ im f},
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so there exists a map s : E → A such that s(e1 + e2) = x where f(x) = e1 + e2. We claim

this map s induces a section S : Γ�∆→ A, defined by S(e, e′) mod ∆ = x when f(x) = e,

for the inclusion F : A ↪→ Γ�∆ defined by F (x) = (f(x), 0) mod ∆. First, note that S is

well-defined since f is injective; if we wish to compute S(e, e′) mod ∆ and both f(x) = e

and f(y) = e, then since f is injective, x = y. Now, to see the claim, observe that

SF (x) = S(f(x), 0) mod ∆

= S(e1 + e2, 0) mod ∆

= x,

and the claim is shown. This means that by Exercise 2,

0→ A
F−→ Γ�∆

G−→ B → 0

is split, and thus by definition equivalent to

0→ A→ A⊕B → B → 0,

the identity element.

5. Finally, to see that Ext1R(A,B) is abelian, see that

0 A E � E′ B 0

0 A {(e, e′) | g(e) = g′(e)}�{(f(t),−f ′(t)) | t ∈ A} B 0

0 A {(e′, e) | g(e) = g′(e)}�{(f ′(t),−f(t)) | t ∈ A} B 0

0 A E′ � E B 0,

idA θ idB

where θ : E � E′ → E′ � E is the map

θ(e, e′) mod (f(t),−f ′(t)) = (e′, e) mod (f ′(t),−f(t)).

Clearly if θ is well-defined, then the squares above commute, and by the five lemma θ is
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an isomorphism. We just show that θ is well-defined. If

(e1, e1
′) = (e2, e2

′) mod (f(t),−f ′(t)),

then

(e1 − e2, e1′ − e2′) = (f(t),−f ′(t)) mod (f(t),−f ′(t)),

and thus by swapping coordinates,

(e1
′ − e2′, e1 − e2) = (−f ′(t), f(t)) mod (−f ′(t), f(t))

= (−f ′(t), f(t))− 2(−f ′(t), f(t)) mod (−f ′(t), f(t))

= (f ′(t),−f(t)) mod (−f ′(t), f(t))

= (f ′(t),−f(t)) mod (f ′(t),−f(t)),

and so

(e1
′, e1) = (e2

′, e2) mod (f ′(t),−f(t)).

The left is θ(e1, e1
′) and the right is θ(e2, e2

′), so θ is indeed well-defined.

Next, to see that Ext1R(A,B) is an R-module, observe that E � E′ = Γ�∆ is a quotient of

R-modules (Exercises 3 and 4), hence an R-module. Then for r, s ∈ R and equivalence classes

E = 0→ A→ E → B → 0 and E′ = 0→ A→ E′ → B → 0 in Ext1R(A,B), we have

1.

r(E � E′) = r(0→ A→ Γ�∆→ B → 0) = 0→ rA→ rΓ�∆→ rB → 0 = rE � rE′;
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2.

(r + s)E = (r + s)(0→ A→ E → B → 0)

= 0→ (r + s)A→ (r + s)E → (r + s)B → 0

= 0→ rA+ sA→ rE + sE → rB + sB → 0

= r(0→ A→ E → B → 0) + s(0→ A→ E → B → 0)

= rE + sE;

3.

(rs)E = (rs)(0→ A→ E → B → 0)

= 0→ (rs)A→ (rs)E → (rs)B → 0

= 0→ r(sA)→ r(sE)→ r(sB)→ 0

= r(0→ sA→ sE → sB → 0)

= r(sE);

4.

1E = 1(0→ A→ E → B → 0) = 0→ 1A→ 1E → 1B → 0 = 0→ A→ E → B → 0 = E.
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