Construction of $\operatorname{Ext}_{R}^{1}(A, B)$

We begin by constructing a category, SES. The objects are short exact sequences $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ (suppose of R-modules) and the arrows are diagrams, which is to say, vertical maps such that the following diagram commutes:

Now, fix A and B and consider extensions $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$. We define an equivalence relation on extensions by $(0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0) \sim\left(0 \rightarrow A \rightarrow E^{\prime} \rightarrow B \rightarrow 0\right)$ if and only if we have

where $\theta: E \rightarrow E^{\prime}$ is an isomorphism.

Exercise $1 \sim$ defines an equivalence relation on extensions.

We show \sim is symmetric, reflexive, and transitive:

- Symmetric: id_{E} is an isomorphism.
- Reflexive: $\theta: E \rightarrow E^{\prime}$ an isomorphism means $\theta^{-1}: E^{\prime} \rightarrow E$ is an isomorphism.
- Transitive: $\theta_{1}: E \rightarrow E^{\prime}$ and $\theta_{2}: E^{\prime} \rightarrow E^{\prime \prime}$ isomorphisms mean $\left(\theta_{2} \circ \theta_{1}\right): E \rightarrow E^{\prime \prime}$ is an isomorphism.

Now, we define an extension $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ to be split if it is equivalent to the short exact sequence $0 \rightarrow A \rightarrow A \oplus B \rightarrow B \rightarrow 0$ with maps inclusion and projection.

Exercise 2 Prove that the following are equivalent:

1. $0 \rightarrow A \xrightarrow{f} E \xrightarrow{g} B \rightarrow 0$ is split in the above definition;
2. the map f is split;
3. the map g is split.

First, recall that for f to be split means there exists $\varphi: E \rightarrow A$ such that $\varphi f=\operatorname{id}_{A}$. For g to be split means there exists $\psi: B \rightarrow E$ such that $g \psi=\mathrm{id}_{B}$.

Now for 1 implies 2: we have a commutative diagram

Since the diagram commutes in the second square, for all $e \in E, \theta(e)=(x, g(e))$. Define $\varphi: E \rightarrow A$ to be $\varphi(e)=x$. Then see that as the diagram commutes in the first square, for all $a \in A,(a, 0)=\theta f(a)$. Therefore

$$
(a, 0)=\theta f(a)=\theta(f a)=(\varphi(f a), g(f a))=(\varphi f(a), g(f a)),
$$

so $\varphi f=\mathrm{id}_{A}$, as desired.
Now, 1 implies 3: the same diagram

commuting means that $g(e)=\pi_{2} \theta(e)$, for π_{2} projection to the second factor. If we choose $\psi: B \rightarrow E$ to be $\psi(b)=\theta^{-1}(0, b)$, then

$$
g \psi(b)=\pi_{2} \theta \theta^{-1}(0, b)=\pi_{2}(0, b)=b,
$$

and $g \psi=\operatorname{id}_{B}$ as desired.
Now for 2 implies 1: since f is split, there exists $\varphi: E \rightarrow A$ with $\varphi f=\operatorname{id}_{A}$. We need to show there is some isomorphism $\theta: E \rightarrow A \oplus B$ such that $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ is split. We claim it is $\theta(e)=(\varphi(e), g(e)) . \theta$ will indeed be an isomorphism by the five lemma once we establish the commutativity of the diagram. To see that

commutes, observe that for all $a \in A$,

$$
\theta f(a)=(\varphi(f(a)), g(f(a)))=(a, g f(a))=(a, 0)
$$

so the left square commutes. Also for all $e \in E$,

$$
\pi_{2} \theta(e)=\pi_{2}(\varphi(e), g(e))=g(e)=\operatorname{id}_{B} g(e)
$$

so the right square commutes. Thus the extension is exact.

Finally, for 3 implies 1: we have the existence of $\psi: B \rightarrow E$ such that $g \psi=\operatorname{id}_{B}$. It is equivalent to have the isomorphisms showing the extension is exact go in the other direction, so we let $\sigma: A \oplus B \rightarrow E$ be $\sigma(a, b)=f(a)+\psi(b)$. First, σ is indeed an isomorphism again by the five lemma after showing the diagram commutes. And to see that

commutes, on the left square we get $\sigma(a, 0)=f(a)+\psi(0)=f(a)=f \operatorname{id}_{A}(a)$. On the right square we get $g \sigma(a, b)=g(f(a)+\psi(b))=g f(a)+g \psi(b)=b=\operatorname{id}_{B} \pi_{2}(a, b)$.

Now, given two extension $0 \rightarrow A \xrightarrow{f} E \xrightarrow{g} B \rightarrow 0$ and $0 \rightarrow A \xrightarrow{f^{\prime}} E^{\prime} \xrightarrow{g^{\prime}} B \rightarrow 0$, we can build a pullback:

$$
\Gamma=E \times{ }_{B} E^{\prime}=\left\{\left(e, e^{\prime}\right) \in E \times E^{\prime} \mid g(e)=g^{\prime}\left(e^{\prime}\right)\right\}
$$

In other words, the following commutes:

Exercise 3 Show that Γ is an R-module.

If it is, it is clearly a submodule of $E \oplus E^{\prime}$, so we use the submodule criterion. We must show $\Gamma \neq \emptyset$ and $\mathbf{x}+r \mathbf{y} \in \Gamma$ for all $r \in R$ and $\mathbf{x}, \mathbf{y} \in \Gamma$. Clearly $\Gamma \neq \emptyset$, since $(0,0) \in \Gamma$ as $g(0)=g^{\prime}(0)=0$. Now let $r \in R$ and $\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in \Gamma$. See that

$$
g(x+r y)=g(x)+r g(y)=g^{\prime}\left(x^{\prime}\right)+r g^{\prime}\left(y^{\prime}\right)=g^{\prime}\left(x^{\prime}+r y^{\prime}\right),
$$

so $\left(x, x^{\prime}\right)+r\left(y, y^{\prime}\right) \in \Gamma$, and Γ is an R-module, as desired.

Exercise 4 Show that $\Delta=\left\{\left(f(t),-f^{\prime}(t)\right) \mid t \in A\right\}$ is a submodule of Γ.
Now we really use the submodule criterion. $\Delta \neq \emptyset$ because $(0,0) \in \Delta$, since $(0,0)=$ $\left(f(0),-f^{\prime}(0)\right)$ for $0 \in A$. And if $\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in \Delta$ and $r \in R$, then there is some $t \in A$ such that $\left(f(t),-f^{\prime}(t)\right)=\left(x, x^{\prime}\right)$ and some $s \in A$ such that $\left(f(s),-f^{\prime}(s)\right)=\left(y, y^{\prime}\right)$. Now see
that

$$
\left(x, x^{\prime}\right)+r\left(y, y^{\prime}\right)=\left(f(t),-f^{\prime}(t)\right)+r\left(f(s),-f^{\prime}(s)\right)=\left(f(t+r s),-f^{\prime}(t+r s)\right) \in \Delta
$$

as $t+r s \in A$.

Exercise 5 Show that $0 \rightarrow A \rightarrow \Gamma / \Delta \rightarrow B \rightarrow 0$ is an extension; i.e., show that it is a short exact sequence.

Define the maps to be

$$
0 \rightarrow A \xrightarrow{F} \Gamma / \Delta \xrightarrow{G} B \rightarrow 0
$$

where $F(t)=(f(t), 0) \bmod \Delta$ and $G\left(e, e^{\prime}\right) \bmod \Delta=g(e)$. Note first that

$$
F(t)=(f(t), 0) \bmod \Delta=(f(t), 0)-\left(f(t),-f^{\prime}(t)\right) \bmod \Delta=\left(0, f^{\prime}(t)\right) \bmod \Delta
$$

and that

$$
G\left(e, e^{\prime}\right) \bmod \Delta=g(e)=g^{\prime}\left(e^{\prime}\right)
$$

Also, F is clearly well-defined, but G not as clearly. If $\left(e_{1}, e^{\prime}{ }_{1}\right) \bmod \Delta=\left(e_{2}, e^{\prime}{ }_{2}\right) \bmod \Delta$, then

$$
\left(e_{1}-e_{2}, e^{\prime}{ }_{1}-e^{\prime}{ }_{2}\right) \bmod \Delta=\left(f(t),-f^{\prime}(t)\right) \bmod \Delta
$$

so $e_{1}-e_{2} \in \operatorname{im} f=\operatorname{ker} g$ and $e^{\prime}{ }_{1}-e^{\prime}{ }_{2} \in \operatorname{im} f^{\prime}=\operatorname{ker} g^{\prime}$. Thus

$$
\begin{gathered}
0=g\left(e_{1}-e_{2}\right)=g\left(e_{1}\right)-g\left(e_{2}\right), \text { so } g\left(e_{1}\right)=g\left(e_{2}\right), \text { and } \\
0=g^{\prime}\left(e_{1}^{\prime}-e_{2}^{\prime}\right)=g^{\prime}\left(e_{1}^{\prime}\right)-g^{\prime}\left(e^{\prime}{ }_{2}\right), \text { so } g^{\prime}\left(e_{1}^{\prime}\right)=g^{\prime}\left(e_{2}^{\prime}\right) .
\end{gathered}
$$

Thus G is well-defined.
F is injective because if $F(t)=(0,0) \bmod \Delta$, then $(f(t), 0)=\left(0, f^{\prime}(t)\right)=(0,0) \bmod \Delta$, and since (overkilling) both f and f^{\prime} are injective, $t=0 . G$ is surjective becase $G\left(e, e^{\prime}\right)$ $\bmod \Delta=g(e)=g^{\prime}\left(e^{\prime}\right)$ and g, g^{\prime} are surjective.

Now we show that $\operatorname{im} F=\operatorname{ker} G$. Let $(x, y) \bmod \Delta \in \operatorname{im} F$. Then there exists $t \in A$ such that $F(t)=(f(t), 0) \bmod \Delta=\left(0, f^{\prime}(t)\right) \bmod \Delta=(x, y) \bmod \Delta$. Then compute

$$
G(x, y) \bmod \Delta=g(x)=g^{\prime}(y) .
$$

Since $x=f(t), x \in \operatorname{im} f=\operatorname{ker} g$, so $g(x)=0$. Identically we overkill and $y \in \operatorname{im} f^{\prime}=\operatorname{ker} g^{\prime}$, so $g^{\prime}(y)=0$. Thus $(x, y) \bmod \Delta \in \operatorname{ker} G$.

Let $(x, y) \bmod \Delta \in \operatorname{ker} G$. Then $G(x, y)=g(x)=g^{\prime}(y)=0$, so $x \in \operatorname{ker} g=\operatorname{im} f$ and $y \in \operatorname{ker} g^{\prime}=\operatorname{im} f^{\prime}$. So there exists $t, s \in A$ such that $f(t)=x$ and $f^{\prime}(s)=y$. We need to show there exists $u \in A$ such that

$$
F(u)=(f(u), 0) \bmod \Delta=\left(0, f^{\prime}(u)\right) \bmod \Delta=(x, y) \bmod \Delta
$$

Since

$$
\begin{aligned}
(x, y) \bmod \Delta & =\left(f(t), f^{\prime}(s)\right) \bmod \Delta \\
& =\left(f(t), f^{\prime}(s)\right)-\left(f(t),-f^{\prime}(t)\right) \bmod \Delta \\
& =\left(0, f^{\prime}(s+t)\right) \bmod \Delta,
\end{aligned}
$$

or symmetrically

$$
\begin{aligned}
(x, y) \bmod \Delta & =\left(f(t), f^{\prime}(s)\right) \bmod \Delta \\
& =\left(f(t), f^{\prime}(s)\right)+\left(f(s),-f^{\prime}(s)\right) \bmod \Delta \\
& =(f(t+s), 0) \bmod \Delta,
\end{aligned}
$$

let $u=t+s$. Then

$$
F(u)=F(t+s)=(f(t+s), 0) \bmod \Delta=\left(0, f^{\prime}(t+s)\right) \bmod \Delta=(x, y) \bmod \Delta,
$$

and $(x, y) \bmod \Delta \in \operatorname{im} F$. Thus $0 \rightarrow A \rightarrow \Gamma / \Delta \rightarrow B \rightarrow 0$ is exact, as desired.

Exercise 6 Show that the set of equivalence classes of extensions $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ under the binary operation $E \boxplus E^{\prime}=\Gamma / \Delta$ is an R-module. We denote this module $\operatorname{Ext}_{R}^{1}(A, B)$. Show that its identity is the equivalence class of the split short exact sequence.

First, to see $\operatorname{Ext}_{R}^{1}(A, B)$ is an abelian group:

1. \boxplus is closed by Exercise 5. It's well-defined on equivalence classes, since if

commutes (i.e., if $E \sim E^{\prime}$), then we need to show $E \boxplus \widetilde{E}=E^{\prime} \boxplus \widetilde{E}$. Observe that since $E \sim E^{\prime}$, we can use the commutativity of the diagram to write

$$
\begin{aligned}
E \boxplus \widetilde{E} & =\{(e, \widetilde{e}) \mid g(e)=\widetilde{g}(\widetilde{e})\} /\{(f(t),-\widetilde{f}(t))\} \\
& =\left\{(e, \widetilde{e}) \mid g^{\prime}(\theta(e))=\widetilde{g}(\widetilde{e})\right\} /\left\{\left(\theta^{-1}\left(f^{\prime}(t)\right),-\widetilde{f}(t)\right)\right\}
\end{aligned}
$$

and since θ is an isomorphism,

$$
\begin{aligned}
& \left\{(e, \widetilde{e}) \mid g^{\prime}(\theta(e))=\widetilde{g}(\widetilde{e})\right\} /\left\{\left(\theta^{-1}\left(f^{\prime}(t)\right),-\widetilde{f}(t)\right)\right\} \\
& \cong\left\{\left(e^{\prime}, \widetilde{e}\right) \mid g^{\prime}\left(e^{\prime}\right)=\widetilde{g}(\widetilde{e})\right\} /\left\{\left(f^{\prime}(t),-\widetilde{f}(t)\right)\right\} \\
& =E^{\prime} \boxplus \widetilde{E}
\end{aligned}
$$

2. For associativity, see that given

$$
\begin{aligned}
& 0 \longrightarrow A \xrightarrow{f} E \xrightarrow{g} B \longrightarrow 0, \\
& 0 \longrightarrow A \xrightarrow{f^{\prime}} E^{\prime} \xrightarrow{g^{\prime}} B \longrightarrow \\
& 0 \longrightarrow A \xrightarrow{f^{\prime \prime}} E^{\prime \prime} \xrightarrow{g^{\prime \prime}} B \longrightarrow
\end{aligned}
$$

we have

$$
\begin{aligned}
& E \boxplus\left(E^{\prime} \boxplus E^{\prime \prime}\right) \\
& =E \boxplus\left\{\left(e^{\prime}, e^{\prime \prime}\right) \mid g^{\prime}\left(e^{\prime}\right)=g^{\prime \prime}\left(e^{\prime \prime}\right)\right\} /\left\{\left(f^{\prime}(t),-f^{\prime \prime}(t)\right)\right\} \\
& =\left\{\left(e,\left(e^{\prime}, e^{\prime \prime}\right)\right) \mid g(e)=G^{\prime}\left(e^{\prime}, e^{\prime \prime}\right)=g^{\prime}\left(e^{\prime}\right)=g^{\prime \prime}\left(e^{\prime \prime}\right)\right\} /\left\{\left(f(t),-\left(f^{\prime}(t),-f^{\prime \prime}(t)\right)\right)\right\} \\
& =\left\{\left(e, e^{\prime}, e^{\prime \prime}\right) \mid g(e)=g^{\prime}\left(e^{\prime}\right)=g^{\prime \prime}\left(e^{\prime \prime}\right)\right\} /\left\{\left(f(t),-f^{\prime}(t), f^{\prime \prime}(t)\right)\right\} \\
& =\left\{\left(\left(e, e^{\prime}\right), e^{\prime \prime}\right) \mid g(e)=g^{\prime}\left(e^{\prime}\right)=G\left(e, e^{\prime}\right)=g^{\prime \prime}\left(e^{\prime \prime}\right)\right\} /\left\{\left(\left(f(t),-f^{\prime}(t)\right),-f^{\prime \prime}(t)\right)\right\} \\
& =\left\{\left(e, e^{\prime}\right) \mid g(e)=g^{\prime}\left(e^{\prime}\right)\right\} /\left\{\left(f(t),-f^{\prime}(t)\right)\right\} \boxplus E^{\prime \prime} \\
& =\left(E \boxplus E^{\prime}\right) \boxplus E^{\prime \prime}
\end{aligned}
$$

The maps line up nicely because the short exact sequence of a Γ / Δ is just the maps modulo Δ.
3. The identity element is (the equivalence class of) $E=A \oplus B$ in the extension $0 \rightarrow A \xrightarrow{\iota_{1}}$ $A \oplus B \xrightarrow{\pi_{2}} B \rightarrow 0$. Clearly this is exact, as $\operatorname{im} f=A \oplus 0=\operatorname{ker} g$. And for any E,

$$
\Gamma=\{(e,(a, b)) \mid g(e)=b\} \cong\{(a, e) \mid g(e)=b\}=A \oplus E
$$

since g is surjective, and

$$
\Delta=\{(f(t),-(t, 0)) \mid t \in A\} \cong\{(-t, 0) \mid t \in A\}=A \oplus 0
$$

since f is injective. Then $E \boxplus A \oplus B=\Gamma / \Delta=A \oplus E / A \oplus 0 \cong E$. And $A \oplus B \boxplus E=E$ will come from abelian-ness.
4. The inverse of (the equivalence class of) $0 \rightarrow A \xrightarrow{f} E \xrightarrow{g} B \rightarrow 0$ is (the equivalence class of) $0 \rightarrow A \xrightarrow{f} E \xrightarrow{-g} B \rightarrow 0$. Indeed, see that

$$
\begin{aligned}
\Gamma & =\left\{\left(e_{1}, e_{2}\right) \mid g\left(e_{1}\right)=-g\left(e_{2}\right)\right\} \\
& =\left\{\left(e_{1}, e_{2}\right) \mid g\left(e_{1}+e_{2}\right)=0\right\} \\
& =\left\{\left(e_{1}, e_{2}\right) \mid e_{1}+e_{2} \in \operatorname{ker} g\right\} \\
& =\left\{\left(e_{1}, e_{2}\right) \mid e_{1}+e_{2} \in \operatorname{im} f\right\}
\end{aligned}
$$

so there exists a map $s: E \rightarrow A$ such that $s\left(e_{1}+e_{2}\right)=x$ where $f(x)=e_{1}+e_{2}$. We claim this map s induces a section $S: \Gamma / \Delta \rightarrow A$, defined by $S\left(e, e^{\prime}\right) \bmod \Delta=x$ when $f(x)=e$, for the inclusion $F: A \hookrightarrow \Gamma / \Delta$ defined by $F(x)=(f(x), 0) \bmod \Delta$. First, note that S is well-defined since f is injective; if we wish to compute $S\left(e, e^{\prime}\right) \bmod \Delta$ and both $f(x)=e$ and $f(y)=e$, then since f is injective, $x=y$. Now, to see the claim, observe that

$$
\begin{aligned}
S F(x) & =S(f(x), 0) \bmod \Delta \\
& =S\left(e_{1}+e_{2}, 0\right) \bmod \Delta \\
& =x
\end{aligned}
$$

and the claim is shown. This means that by Exercise 2,

$$
0 \rightarrow A \xrightarrow{F} \Gamma / \Delta \xrightarrow{G} B \rightarrow 0
$$

is split, and thus by definition equivalent to

$$
0 \rightarrow A \rightarrow A \oplus B \rightarrow B \rightarrow 0
$$

the identity element.
5. Finally, to see that $\operatorname{Ext}_{R}^{1}(A, B)$ is abelian, see that

where $\theta: E \boxplus E^{\prime} \rightarrow E^{\prime} \boxplus E$ is the map

$$
\theta\left(e, e^{\prime}\right) \bmod \left(f(t),-f^{\prime}(t)\right)=\left(e^{\prime}, e\right) \bmod \left(f^{\prime}(t),-f(t)\right)
$$

Clearly if θ is well-defined, then the squares above commute, and by the five lemma θ is
an isomorphism. We just show that θ is well-defined. If

$$
\left(e_{1}, e_{1}^{\prime}\right)=\left(e_{2}, e_{2}^{\prime}\right) \bmod \left(f(t),-f^{\prime}(t)\right),
$$

then

$$
\left(e_{1}-e_{2}, e_{1}^{\prime}-e_{2}^{\prime}\right)=\left(f(t),-f^{\prime}(t)\right) \bmod \left(f(t),-f^{\prime}(t)\right)
$$

and thus by swapping coordinates,

$$
\begin{aligned}
\left(e_{1}^{\prime}-e_{2}^{\prime}, e_{1}-e_{2}\right) & =\left(-f^{\prime}(t), f(t)\right) \bmod \left(-f^{\prime}(t), f(t)\right) \\
& =\left(-f^{\prime}(t), f(t)\right)-2\left(-f^{\prime}(t), f(t)\right) \bmod \left(-f^{\prime}(t), f(t)\right) \\
& =\left(f^{\prime}(t),-f(t)\right) \bmod \left(-f^{\prime}(t), f(t)\right) \\
& =\left(f^{\prime}(t),-f(t)\right) \bmod \left(f^{\prime}(t),-f(t)\right)
\end{aligned}
$$

and so

$$
\left(e_{1}^{\prime}, e_{1}\right)=\left(e_{2}^{\prime}, e_{2}\right) \bmod \left(f^{\prime}(t),-f(t)\right)
$$

The left is $\theta\left(e_{1}, e_{1}^{\prime}\right)$ and the right is $\theta\left(e_{2}, e_{2}{ }^{\prime}\right)$, so θ is indeed well-defined.
Next, to see that $\operatorname{Ext}_{R}^{1}(A, B)$ is an R-module, observe that $E \boxplus E^{\prime}=\Gamma / \Delta$ is a quotient of R-modules (Exercises 3 and 4), hence an R-module. Then for $r, s \in R$ and equivalence classes $E=0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ and $E^{\prime}=0 \rightarrow A \rightarrow E^{\prime} \rightarrow B \rightarrow 0$ in $\operatorname{Ext}_{R}^{1}(A, B)$, we have
1.

$$
r\left(E \boxplus E^{\prime}\right)=r(0 \rightarrow A \rightarrow \Gamma / \Delta \rightarrow B \rightarrow 0)=0 \rightarrow r A \rightarrow r \Gamma / \Delta \rightarrow r B \rightarrow 0=r E \boxplus r E^{\prime}
$$

2.

$$
\begin{aligned}
(r+s) E & =(r+s)(0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0) \\
& =0 \rightarrow(r+s) A \rightarrow(r+s) E \rightarrow(r+s) B \rightarrow 0 \\
& =0 \rightarrow r A+s A \rightarrow r E+s E \rightarrow r B+s B \rightarrow 0 \\
& =r(0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0)+s(0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0) \\
& =r E+s E ;
\end{aligned}
$$

3.

$$
\begin{aligned}
(r s) E & =(r s)(0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0) \\
& =0 \rightarrow(r s) A \rightarrow(r s) E \rightarrow(r s) B \rightarrow 0 \\
& =0 \rightarrow r(s A) \rightarrow r(s E) \rightarrow r(s B) \rightarrow 0 \\
& =r(0 \rightarrow s A \rightarrow s E \rightarrow s B \rightarrow 0) \\
& =r(s E) ;
\end{aligned}
$$

4.

$$
1 E=1(0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0)=0 \rightarrow 1 A \rightarrow 1 E \rightarrow 1 B \rightarrow 0=0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0=E .
$$

