Construction of Extp(A, B)

We begin by constructing a category, SES. The objects are short exact sequences 0 - A - F — B — 0
(suppose of R-modules) and the arrows are diagrams, which is to say, vertical maps such that the following
diagram commutes:

0 A E B 0
Ll
0 A E' B’ 0

Now, fix A and B and consider extensions 0 -+ A — E — B — 0. We define an equivalence relation on
extensions by (0 > A —+E — B —0)~ (0 A— E' — B — 0) if and only if we have

0 A E B 0
lar o s
0 A E' B 0

where 0 : E — E’ is an isomorphism.

Exercise 1 ~ defines an equivalence relation on extensions.

We show ~ is symmetric, reflexive, and transitive:

— Symmetric: idg is an isomorphism.
— Reflexive: § : E — E’ an isomorphism means §~! : E/ — E is an isomorphism.

— Transitive: 6y : E — E’ and 03 : E' — E” isomorphisms mean (65 06;) : E — E” is an

isomorphism.

Now, we define an extension 0 - A — F — B — 0 to be split if it is equivalent to the short exact
sequence 0 - A -+ A@® B — B — 0 with maps inclusion and projection.

Exercise 2 Prove that the following are equivalent:
1. 0= AL E% B 0is split in the above definition;
2. the map f is split;
3. the map g is split.
First, recall that for f to be split means there exists ¢ : £ — A such that ¢f =id4. For g to

be split means there exists ¢ : B — F such that g = idpg.

Now for 1 implies 2: we have a commutative diagram

0 A—1 s p— ¢ ,p 0
J{ldA J{@ J{ldB
0 A a—(a,0) A o B (a,b)—b B 0




Since the diagram commutes in the second square, for all e € E, 6(e) = (x,g(e)). Define
¢ : E — A to be p(e) = x. Then see that as the diagram commutes in the first square, for all

a€ A, (a,0) =0f(a). Therefore

(a,0) = 0f(a) = 0(fa) = (#(fa), g(fa)) = (¢f(a), 9(fa)),

so ¢f =1idy, as desired.

Now, 1 implies 3: the same diagram

0 A—t s p—9 .p 0
J/ldA J/Q J/ldB
0 A a—(a,0) A @B (a,b)—b B 0

commuting means that g(e) = m26(e), for ms projection to the second factor. If we choose

Y : B — E to be ¥(b) = §1(0,b), then

g¥(b) = m007(0,b) = m2(0,b) = b,

and g1 = idp as desired.

Now for 2 implies 1: since f is split, there exists ¢ : E — A with ¢f =id4. We need to show
there is some isomorphism 6 : E — A @ B such that 0 > A — F — B — 0 is split. We claim
it is 8(e) = (p(e), g(e)). O will indeed be an isomorphism by the five lemma once we establish

the commutativity of the diagram. To see that

0 A—7t g2 . 0
J{ldA J{& J{ldB
0 A a—(a,0) A o B (a,b)—b B 0

commutes, observe that for all a € A,

0f(a) = (¢(f(a),9(f(a))) = (a,9f(a)) = (a,0),

so the left square commutes. Also for all e € E,

mb(e) = ma(p(e), g(e)) = g(e) = idp g(e),

so the right square commutes. Thus the extension is exact.




Finally, for 3 implies 1: we have the existence of ¢ : B — E such that gi» = idg. It is equivalent
to have the isomorphisms showing the extension is exact go in the other direction, so we let
0:A® B — E be og(a,b) = f(a) + (b). First, o is indeed an isomorphism again by the five

lemma after showing the diagram commutes. And to see that

a—+(a,0) (a,b)—b

A®B B 0
idp

E g B 0

A
a
S

%
q

%

commutes, on the left square we get o(a,0) = f(a) +¢¥(0) = f(a) = fida(a). On the right

square we get go(a.b) = g(f(a) +¥(8)) = gf(a) + g(8) = b= idp m(a, ).

. J

Now, given two extension 0 — A LE%BsoandosAl B LB 0, we can build a pullback:
IF'=ExpE ={(e,e') e ExE"|gle)=g'(")}.

In other words, the following commutes:
r
N
E E
B

Exercise 3 Show that I' is an R-module.

If it is, it is clearly a submodule of E & E’, so we use the submodule criterion. We must
show I' # ) and x +ry € T for all r € R and x,y € I'. Clearly I # (), since (0,0) € T as
g(0) = ¢’(0) = 0. Now let » € R and (z,2'), (y,¥') € T'. See that

gl +ry) =g(@)+rgly) =g @) +rg' () =g (& +ry),

so (z,2') +r(y,y’) €T, and T is an R-module, as desired.

Exercise 4 Show that A = {(f(t),—f'(t)) | t € A} is a submodule of T'.

Now we really use the submodule criterion. A # ) because (0,0) € A, since (0,0) =
(f(0),—=f'(0)) for 0 € A. And if (z,2'),(y,y’) € A and r € R, then there is some t € A
such that (f(t),—f'(t)) = (z,2") and some s € A such that (f(s),—f'(s)) = (y,¥'). Now see




that

(@,2) +r(y.y) = (f(), =F' ) +7(f(s),=f'(s) = (f(t+7s), = (t +75)) € A,

ast+rs e A

Exercise 5 Show that 0 — A — F/A — B — 0 is an extension; i.e., show that it is a short exact
sequence.

Define the maps to be

OHAQF/AE-)B%O,
where F(t) = (f(¢),0) mod A and G(e,e’) mod A = g(e). Note first that

F(t) = (/(t),0) mod A = (£(£),0) — (/(t), — (1)) mod A = (0, /'(£)) mod A
and that
G(e,e’) mod A = g(e) = ¢'(€).
Also, F is clearly well-defined, but G not as clearly. If (e, e’1) mod A = (eg,€’3) mod A, then
(e1 — ez, e’y —€'a) mod A = (f(t),—f'(t)) mod A,

soe; —ey €imf=kerg and ¢’;1 —e€'s € im f/ = kerg’. Thus

0=g(e1 —e2) =g(e1) — g(e2), s0 g(e1) = g(ez), and

0=yg'(e'1 —€2)=g¢'(¢'1) = g'(e'2), so g'(e'1) = g'(¢2).

Thus G is well-defined.

F is injective because if F(t) = (0,0) mod A, then (f(¢),0) = (0, f’(¢)) = (0,0) mod A,
and since (overkilling) both f and f’ are injective, t = 0. G is surjective becase G(e,e’)

mod A = g(e) = ¢'(¢/) and g, ¢’ are surjective.




Now we show that im F' = ker G. Let (z,y) mod A € im F. Then there exists ¢t € A such that
F(t) = (f(t),0) mod A = (0, f'(t)) mod A = (z,y) mod A. Then compute

G(z,y) mod A = g(z) = ¢'(y).

Since z = f(t), « € im f = ker g, so g(x) = 0. Identically we overkill and y € im f’ = ker ¢, so
g'(y) = 0. Thus (z,y) mod A € kerG.

Let (z,y) mod A € kerG. Then G(z,y) = g(z) = ¢'(y) = 0, so x € kerg = im f and
y € kerg’ =1im f’. So there exists t,s € A such that f(¢t) = z and f'(s) = y. We need to show

there exists u € A such that
F(u) = (f(u),0) mod A = (0, f'(u)) mod A = (z,y) mod A
Since

(x,y) mod A = (f(t), f/(s)) mod A

= (f(t), f'(5)) = (f(t),—f'(t)) mod A
= (0, f(s+1t)) mod A,

or symmetrically

(z,y) mod A = (f(t), f'(s)) mod A
= (f(t), f'(s)) + (f(s),—f'(s)) mod A
= (f(t+s),0) mod A,

let w =t+s. Then
F(u)=F(t+s)=(f(t+s),0) mod A = (0, f'(t+s)) mod A = (z,y) mod A,

and (z,y) mod A € im F. Thus 0 - A — F/A — B — 0 is exact, as desired.




Exercise 6 Show that the set of equivalence classes of extensions 0 —+ A — E — B — 0 under the
binary operation £ #H E’' = P/A is an R-module. We denote this module Ext}%(A, B). Show that its
identity is the equivalence class of the split short exact sequence.

First, to see Ext(A, B) is an abelian group:

1. H is closed by Exercise 5. It’s well-defined on equivalence classes, since if

0 ALl . p_9.B 0
JidA J{e JidB
0 AL g 9. p 0

commutes (i.e., if E ~ E’), then we need to show E B E = E'# E. Observe that since

E ~ E’, we can use the commutativity of the diagram to write

pBE={eD100=9@ 5o

_{(e,@ "(0(e)) = G(e ~
DO =@ 1 e _Foy

and since 6 is an isomorphism,

e, e "(6(e)) = g(e f
e 1O =@ o i) o

~{(¢,¢) | g'(¢)) = g(a}/{(f,(t)’ _Fo

=E'BE.

2. For associativity, see that given

0 I g2 0,
0 I g S 0,
0 f// E// g// B 0’




we have

E®(E' BE")
—pmi.e)lge)= 9”(6//)}/{”’(75)7 )
_{(e;(¢',€") [ gle) = G'(¢/,e") = g/ (¢') = g”(e”)}/{(f(t)’ - 0)
_{le,e',e") [gle) =g'(¢') = g”(e”)}/{(f(t)’ PO )

—{((e;€),€") | ge) = g'(¢) = Gle,€') = ”(e”)}/{((f(t), PO (0)
—{(e.e) [ g(e) = 9’(6’)}/{“(”7 ) BE
— (EBE)BE"

The maps line up nicely because the short exact sequence of a F/A is just the maps

modulo A.

. The identity element is (the equivalence class of) E = A @ B in the extension 0 — A %

A® B 5 B — 0. Clearly this is exact, as im f = A® 0 = kerg. And for any F,

I = {(e.(@,b)) | g(e) = b} = {(a,¢) | gle) = b} = A® E,

since g is surjective, and
A={(ft),-0) [te A} ={(-t,0)[tc A} = A®O,

since f is injective. Then EBA®@B=1/, =A49E/,  ~F AndAGBBE=E

will come from abelian-ness.

. The inverse of (the equivalence class of) 0 — A LESLBS0is (the equivalence class

of)0— A L E=% B o Indeed, see that

T'={(e1,e2) | gler) = —gle2)}
= {(e1,e2) | gler +e2) = 0}
={(e1,e2) | e1 +es € kerg}

={(e1,e2) | e1 + €2 €1im f},




so there exists a map s : E — A such that s(e; + e3) =  where f(x) = e; + e5. We claim
this map s induces a section S : F/A — A, defined by S(e,e’) mod A = z when f(z) =e,
for the inclusion F': A — F/A defined by F(x) = (f(z),0) mod A. First, note that S is
well-defined since f is injective; if we wish to compute S(e,e’) mod A and both f(z) =e

and f(y) = e, then since f is injective, = y. Now, to see the claim, observe that

SF(x) = S(f(x),0) mod A
= S(e1 + €2,0) mod A

=z,

and the claim is shown. This means that by Exercise 2,
045 F/A % B0

is split, and thus by definition equivalent to
0—+A—->A@B—B—0,

the identity element.

5. Finally, to see that Ext}?(/L B) is abelian, see that

0 A EBE B 0

04— eI =@ i e gy — B —— 0

04— MDD =IOy g1 ey — B ——0

0 A E'BE B 0,

where §: EEHE’ — E'B E is the map

O(e,e’) mod (f(t),—f'(t)) = (e',e) mod (f'(t), —f(t)).

Clearly if 6 is well-defined, then the squares above commute, and by the five lemma 6 is




an isomorphism. We just show that 0 is well-defined. If
(e1,e1') = (e2,e2") mod (f(t), —f' (1)),
then
(e1 —ea,er” —ex) = (f(t), —f'()) mod (f(t), —f' (1)),

and thus by swapping coordinates,

(e — ez’ e1 — e2) = (=f'(1), f(£)) mod (—f'(t), f(£))
= (=f'(®), f(1) = 2(=f'(1), £ (£)) mod (= f'(t), £(1))

and so

(61/761) = (62/,62) mod (f/(t), —f(t))~

The left is O(eq, e1’) and the right is 6(eq, e2’), so 0 is indeed well-defined.

Next, to see that Ext}%(A,B) is an R-module, observe that F B8 E' = F/A is a quotient of
R-modules (Exercises 3 and 4), hence an R-module. Then for r, s € R and equivalence classes

E=02A—-E—-B—0and E'=0— A — E' = B — 0 in Extk(A, B), we have

MEBE)=r05A- A 5B-50)=0-rAsrL/\ 5rB-0=rEBrE,




(r+s)E=(r+s)(0—-A—E—B—0)
=0 (r+s)A—=>(r+s)E—(r+s)B—0
=0—2>rA+sA—>rE+sE—-rB+sB—0
=r0—-A—-FE—-+B—->0+s(0-A—FE—B—0)

=rE+ sE;

(rs)E = (rs)(0 — A — E — B — 0)
=0 (rs)A — (rs)E — (rs)B — 0
=0 — r(sA) = r(sE) = r(sB) = 0
=7(0 = sA — sE — sB — 0)

=r(sE);

1F=10-A—-F—-B—->0=0—-1A—-1F—-1B—-0=0—-A—E—-B—0=E.
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